
Overlap Implementation for GWU-QCD Framework

Michael Lujan

Aug. 2010

The purpose of these notes is to explain how to construct the Dirac Overlap operator in
the gwu-qcd framework.

1 Overview of Overlap

The massless overlap operator is given by

Dov(0) = ρ(1 + γ5ε(H)), (1)

where ρ = 4− 1/2κ, κ is a positive number. H, is the hermitian wilson operator, and ε(H)
is the matrix sign function. The challenging part of computing Dov(0) is the construction
of ε(H). ε(H) cannot be computed exactly everywhere, there is simply not enough compu-
tational resources available, and we therefore must approximate it. In this paper, we use a
polynomial approximation which uses the Chebyshev polynomials as its basis. We will not
get into explaining the mathematical theory behind this approximation. For further details
see [1].

1.1 Deflation

In order to accelerate the computation of ε(H) we use deflation. The idea behind deflation
is to use a small number of eigenvectors, |λ〉, and eigenvalues, λ, of H to compute the sign
of the “small space” exactly. The Arnoldi algorithm allows us to compute a few of these
eigenvectors numerically, typically about a 100 eigenvectors of H are used. We then may
break up the the space of ε(H) as

ε(H) = ε(H)small + ε(H)large. (2)

The eigenvectors and eigenvalues of H allows us to compute the small space as follows

ε(H)small =
N∑

i=1

sign(λi)|λi〉〈λi|

1

The large space then remains to be approximated via Chebyshev polynomials.

As a last note, to obtain the massive overlap operator, Dov(m), one uses the following
relation

Dov(m) = (ρ+m/2) + (ρ−m/2)Dov(0) (3)

2 Constructing Overlap in GWU-QCD Framework

The task in this section is to compute the following linear algebra equation using the gwu-qcd
framework.

Dov(0) η = η′ (4)

There are 3 different implementations of the Overlap operator: (1) GPU only, (2) CPU only,
(3) mix GPU and CPU. Since the GPU only and CPU only construction are identical we’ll
show how to construct the GPU only overlap and the mix overlap.

2.1 Only on GPUs or on CPUs

In order to numerically construct overlap the user must input the necessary parameters.
They are:

• Overlap kernel, which is H. H also encodes the information of ρ.

• Eigenvectors and eigenvalues of H. This is used to compute the small space.

• Precision of the approximation for the large space, usually 10−10. This determines the
accuracy and amount of matrix vector multiplications needed.

The overlap constructor is declared as

template<typename genvector>

overlap_polynomial<genvector>::overlap_polynomial(

overlap_kernel<genvector>& kern,

vec_eigen_pair<genvector>& kes, double max_prec)

The constructor is a template which allows for the overlap to take in either all GPUs or all
CPUs implementation but not a mixture. Furthermore, the framework of gwu-qcd allows
the vectors to also be either floats or doubles, this allows for roughly a factor of 2 in speedup
when using conjugate gradient method to invert the overlap operator.

Once the overlap operator has been constructed there are only a handful of routines available
for the user to access. In the following, genvecs are either CPU or GPU vectors.

2

• eps(genvec1, genvec2, error): This computes ε(H) on a vector.

• gamma5eps(genvec1, genvec2, error): This computes γ5ε(H) on a vector.

• mult(genvec1, genvec2, mass, error): This computes the full massive overlap operator
on a vector. i.e. Dov(m) on a vector.

• get poly order(error): This returns the order of the polynomial corresponding to the
error or the precision requested.

The main routines, eps, gamma5eps, and mult, take in genvec1 as the source vector, and
returns to the user the corresponding matrix vector multiplication in genvec2.

2.2 Mix GPUs and CPUs

The third implementation of overlap allows for a mixture of GPU and CPU vectors to be
passed to the overlap constructor. Though ideally we would wish to keep all vectors on
the GPU, because they are computationally faster, the relatively small amount of memory
inhibits us from doing so. When this issue occurs we would have to allocate some vectors on
the CPU. For this reason we have a mix overlap implementation. The constructor is varied
slightly to be

overlap_polynomial_mix::overlap_polynomial_mix(overlap_kernel_mix& k,

vec_eigen_pair<device_wilson_field>& kes,

double max_prec, vec_eigen_pair<vector>* kes_cpu)

The mix overlap kernel is now differentiated than the previous one, and there are two vec
eigen pairs, the first is for GPU vectors and the second is for CPU vectors, They must be
passed in that order. The routines avaliable to the user are identical to the previous ones,
however they are only for GPUs i.e. device wilson fields and not for CPU vectors.

2.3 Example

Here we give a concrete example of how to code the overlap operator and use a routine. This
is shown for CPU vectors.

int main(void)

{

.

. //usual setup of links, bcs, etc.

.

//Constructor the eigen pair:hw_ieval is number of eigenpairs.

//desc is the lattice desc.

3

vec_eigen_pair<vector> eigen_pair(hw_ieval, desc);

read_vec_eigen_pair(hwevecname, hwevalname, eigen_pair);

//construct the overlap kernel: needs links and kappa

hwilson_cpu_kernel h_mult(links, kappa);

//set maximum precision

double prec = 1e-10;

//construct overlap called ov

overlap_polynomial<vector> ov(h_mult, eigen_pair, prec);

//do something with overlap

double mass = 0.12;

ov.mult(src,dest, mass);

.

.//you have just constructed the overlap operator.

.

}

References

[1] L. Giusti et. al., Comput.Phys.Commun. 153 (2003).

4

